МЕТОД УЗЛОВЫХ ПОТЕНЦИАЛОВ
При расчете электрической цепи методом узловых потенциалов определяются потенциалы узлов цепи, а затем по закону Ома токи в ее ветвях. Метод целесообразно применять в тех случаях, когда число узлов цели меньше или равно числу независимых контуров этой цепи.
Так, для электрической цепи, имеющей четыре узла, составляется три расчетных уравнения (например, для узлов 1, 2 к 3 потенциал узла 4 принимается равным нулю):
где φk - искомый потенциал K-го узла цепи (K = 1,2, 3)
Gkk- (G11, например) собственная (узловая) проводимость k-го узла, равная сумме проводимостей всех ветвей, присоединенных к этому узлу;
Gkm -(G12, например) взаимная (межузловая) проводимость узлов k и m, равная суше проводимостей ветвей, включенных непосредственно между этими узлами;
Jyk (Jy1, например) - узловой ток к-го узла, определяемый из выражения
Под знаком первой суммы произведения ЭДС ветвей, присоединенных к К-му узлу, на проводимости этих ветвей учитывается ЭДС с положительным (отрицательным) знаком, если она направлена к К-му узлу (от К-го узла). Под знаком второй суммы со знаком «+» ("-"} учитываются токи источников тока, которые направлены к К-му узлу (от К-го узла).
Если в цепи между двумя узлами включен идеальный источник ЭДС (внутреннее сопротивление которого равно нулю), необходимо принимать равным нулю потенциал одного из его зажимов, тогда потенциал другого зажима источника будет равен ЭДС с
соответствующим знаком, а количество расчетных уравнений сократится.
Последовательность расчета цепи методом узловых, потенциалов рас-
смотрим на примере. Параметры цепи считаются заданными.
ПРИМЕР 1: Определить токи в ветвях цепи (рис. 1) методом
узловых потенциалов. Положительные направления токов принять по рисунку
E1=100В R1=10 Ом
E6=200В R2=20 Ом
I=5А R3 =5 Ом R4=25 Ом R5=40 Ом
1. В заданной цепи четыре узла. Приравняем нулю (заземлим) потенциал узла 4.Тогда ф4=0
2. Составим расчетную систему уравнений для узлов, потенциалы которых подлежат определению:
Для узлов 2 и 4 уравнения не составляются, так как потенциалы этих узлов известны.
3. Определим узловые и межузловые проводимости:
Взаимная проводимость между узлами 2 и 3 равна нулю, так как эти узлы непосредственно не связаны между собой какими-либо ветвями» т.е. G23=G32=0. Проводимость ветви с источником тока J также равна нулю, так как его внутреннее сопротивление бесконечно велико. Если в какой-либо ветви последовательно включено несколько резисторов, вначале определяется общее сопротивление этой ветви, а затем ее проводимость.
Определим узловые токи:
4. Подставим полученные значения узловых и межузловых проводимостей, а также узловых токов в расчетную систему уравнений. Решая ее, определим искомые потенциалы узлов цепи:
Решить систему уравнений можно методом определителей или с помощью микрокалькулятора по соответствующей программе, однако, если система содержит два уравнения, ее целесообразно решать домножением на общие множители:
*Запись выше несколько непонятна. Она означает домножение левой и правой частей уравнения на множители. Вообще необходимо любым способом решить систему уравнений: например, подстановкой.
Для проверки расчета целесообразно полученные значения потенциалов, вычисленные с точностью до 3-4 значащей цифры, подставить в исходную систему уравнений, которые при этом, очевидно, должны обратиться в тождества.
5. Используя закон Ома, определим токи в ветвях цепи.
Направления токов в ветвях выбраны произвольно и указаны на схеме (рис. I).
Составим выражение для разности потенциалов (напряжения) между узлами 3 и 1:
т.е. в дальнейшем при выбранном направлении тока в ветви его величина определяется следующим образом: в числителе выражения от потенциала узла, из которого ток вытекает, вычитается потенциал узла, к которому ток подтекает.
Если в ветви есть ЭДС, она учитывается со знаком «+» ("-"), когда ее направление совпадает (противоположно) с направлением тока, В знаменателе выражения для тока находится суммарное сопротивление ветви. Аналогично определяются токи остальных ветвей:
Значения токов I1 , I2, и I4 получились со знаком «-». Это свидетельствует о том, что их направления в ветвях противоположны выбранным. Токи I3 и I4 равны между собой в силу принципа непрерывности электрического тока.
Ток в ветви с идеальной ЭДС Е6 определяется из уравнения, составленного по первому закону Кирхгофа. Например, для узла 2
6. Проверка расчета цепи выполняется по законам Кирхгофа
и уравнению энергетического баланса (балансу мощностей),
по первому закону Кирхгофа алгебраическая сумма токов в любом узле электрической цепи равна нулю. Проверяем выполнение этого закона для всех узлов цепи (кроме узла 2: из уравнения для этого узла определялся ток I6:
По второму закону Кирхгофа алгебраическая сумма ЭДС в любом замкнутом контуре электрической цепи равна алгебраической сумме падений напряжений на элементах этого контура. Проверяем выполнение этого закона дня всех независимых контуров заданной цепи;
Для контура с элементами Е1, R1 и R2
для контура с элементами R2, R3, R4 и R5
для контура с элементами E1, R3, E6, R4 и R1
Дня любой электрической цепи мощность, потребляемая резисторами этой цепи, должна равняться мощности источников энергии. Уравнение энергетического баланса ( баланс мощностей) в общем виде записывается следующим образом:
В левой части уравнения учтена мощность источников энергии. Мощность источников ЭДС учитывается с положительным (отрицательным) знаком, если ток, протекающий через источник ЭДС, совпадает ( противоположен) с направлением ЭДС.
Для определения знака мощности источника тока необходимо определить напряжение на источнике. Если ток источника вытекает из точки с меньшим потенциалом и подтекает к точке с большим потенциалом, мощность источника будет положительной (источник генерирует энергию). Если ток источника вытекает из точки более высокого потенциала по
сравнению с потенциалом точки, куда ток втекает, мощность источника будет отрицательной, а режим его работы соответствует потреблению энергии.
В правой части уравнения энергетического баланса записывается арифметическая сумма мощностей, потребляемых резисторами цепи и определяемых по закону Джоуля-Ленца. По своему физическому смыслу эти мощности могут быть только положительными.
Для заданной электрической цепи (рис. I) уравнение энергетического баланса имеет вид
Расчет считается выполненным правильно, если расхождение между левой и правой частями уравнения электрического баланса не превышает 1...2%. Следует помнить, что при выполнении проверки расчета по законам Кирхгофа и балансу мощностей уравнения составляются по выбранным. В начале расчета положительным направлениям токов в ветвях заданной цепи, а числовые значения токов в уравнения подставляются со знаками, полученными в расчете.